PY5ZD - Marcelo S Teixeira |
Eletricidade Eletricidade é o fenômeno físico associado a cargas elétricas estáticas ou em movimento. Seus efeitos se observam em diversos acontecimentos naturais, como nos relâmpagos, que são faíscas elétricas de grande magnitude geradas a partir de nuvens carregadas.
Quando um elétron consegue vencer a força de atração do núcleo, abandona o átomo, que fica, então, carregado positivamente. Livre, o elétron circula pelo material ou entra na configuração de outro átomo, o qual adquire uma carga global negativa. Os átomos que apresentam esse desequilíbrio de carga se denominam íons e se encontram em manifestações elétricas da matéria, como a eletrólise, que é a decomposição das substâncias por ação da corrente elétrica.
A maior parte dos efeitos de condução elétrica se deve à circulação de elétrons livres no interior dos corpos. Os prótons dificilmente vencem as forças de coesão nucleares e, por isso, raras vezes provocam fenômenos de natureza elétrica fora dos átomos. Os metais sólidos constituem o mais claro exemplo de materiais condutores. Os elétrons livres dos condutores metálicos se movem através dos interstícios das redes cristalinas e assemelham-se a uma nuvem. Se o metal se encontra isolado e carregado eletricamente, seus elétrons se distribuem de maneira uniforme sobre a superfície, de forma que os efeitos elétricos se anulam no interior do sólido. Um pouco de história O cientista inglês William Gilbert, primeiro a estudar sistematicamente a eletricidade e o magnetismo, verificou que outros materiais, além do âmbar, adquiriam, quando atritados, a propriedade de atrair outros corpos, e chamou a força observada de elétrica. Atribuiu essa eletrificação à existência de um "fluido" que, depois de removido de um corpo por fricção, deixava uma "emanação". Embora a linguagem utilizada seja curiosa, as noções de Gilbert se aproximam dos conceitos modernos, desde que a palavra fluido seja substituída por "carga", e emanação por "campo elétrico". No século XVIII, o francês Charles François de Cisternay Du Fay comprovou a existência de dois tipos de força elétrica: uma de atração, já conhecida, e outra de repulsão. Suas observações foram depois organizadas por Benjamin Franklin, que atribuiu sinais - positivo e negativo - para distinguir os dois tipos de carga. Nessa época, já haviam sido reconhecidas duas classes de materiais: isolantes e condutores. Foi Benjamin Franklin quem demonstrou, pela primeira vez, que o relâmpago é um fenômeno elétrico, com sua famosa experiência com uma pipa (papagaio). Ao empinar a pipa num dia de tempestade, conseguiu obter efeitos elétricos através da linha e percebeu, então, que o relâmpago resultava do desequilíbrio elétrico entre a nuvem e o solo. A partir dessa experiência, Franklin produziu o primeiro pára-raios. No final do século XVIII, importantes descobrimentos no estudo das cargas estacionárias foram conseguidos com os trabalhos de Joseph Priestley, Lord Henry Cavendish, Charles-Augustin de Coulomb e Siméon-Denis Poisson. Os caminhos estavam abertos e em poucos anos os avanços dessa ciência foram espetaculares.
Em 1820, André-Marie Ampère demonstrou as relações entre correntes paralelas e, em 1831, Michael Faraday fez descobertas que levaram ao desenvolvimento do dínamo, do motor elétrico e do transformador. As pesquisas sobre o poder dos materiais de conduzir energia estática, iniciadas por Cavendish em 1775, foram aprofundadas na Alemanha pelo físico Georg Simon Ohm. Publicada em 1827, a lei de Ohm até hoje orienta o desenho de projetos elétricos.
Eletrostática A carga estática é a carga que está normalmente em repouso na superfície de um objeto. Essa carga pode ser produzida por fricção ou por contatos de objetos, podendo os corpos ficarem carregados positiva ou negativamente. Estudos quantitativos de eletrostática foram feitos separadamente por Coulomb e Cavendish. F = k' Q Q'
------------ r² Q e Q' indicam a grandeza das cargas, r é a distância entre elas e k é a constante de proporcionalidade ou constante dielétrica, cujo valor depende do meio em que se acham imersas as partículas elétricas. A direção das forças é paralela à linha que une as cargas elétricas em questão. O sentido depende da natureza das cargas: se forem de sinais contrários, se atraem; se os sinais forem iguais, se repelem. A unidade de carga da lei de Coulomb recebe a denominação de coulomb no sistema internacional. A força se expressa em newtons e a distância, em metros. Campo elétrico Com o desenvolvimento da eletricidade como ciência, a física moderna abandonou o conceito newtoniano de força como causa dos fenômenos e introduziu a noção de campo. A liberação das partículas passou a ser associada às diferenças de níveis energéticos e não à ação direta de forças. Define-se campo elétrico como uma alteração introduzida no espaço pela presença de um corpo com carga elétrica, de modo que qualquer outra carga de prova localizada ao redor indicará sua presença. Por meio de curvas imaginárias, conhecidas pelo nome de linhas de campo, visualiza-se a direção da força gerada pelo corpo carregado. As características do campo elétrico são determinadas pela distribuição de energias ao longo do espaço afetado. Se a carga de origem do campo for positiva, uma carga negativa introduzida nele se moverá, espontaneamente, pela aparição de uma atração eletrostática. Pode-se imaginar o campo como um armazém de energia causadora de possíveis movimentos. É usual medir essa energia por referência à unidade de carga, com o que se chega à definição de potencial elétrico, cuja magnitude aumenta em relação direta com a quantidade da carga geradora e inversa com a distância dessa mesma carga. A unidade de potencial elétrico é o volt, equivalente a um coulomb por metro. A diferença de potenciais elétricos entre pontos situados a diferentes distâncias da fonte do campo origina forças de atração ou repulsão orientadas em direções radiais dessa mesma fonte. A intensidade do campo elétrico se define como a força que esse campo exerce sobre uma carga contida nele. Dessa forma, se a carga de origem for positiva, as linhas de força vão repelir a carga de prova, e ocorrerá o contrário se a carga de origem for negativa. Diz-se, portanto, que as cargas positivas são geradoras de campos magnéticos e as negativas, de sistemas de absorção ou sumidouros. Dielétricos As substâncias dielétricas (que isolam eletricidade) se distinguem das condutoras por não possuírem cargas livres que possam mover-se através do material, ao serem submetidas a um campo elétrico. Esse deslocamento, chamado polarização elétrica, atinge valores importantes em substâncias cujas moléculas já possuam um ligeiro desequilíbrio na distribuição das cargas. Nesse caso, se produz ainda uma orientação dessas moléculas no sentido do campo elétrico externo e se constituem pequenos dipolos elétricos que criam um campo característico. O campo é dito fechado quando suas linhas partem do pólo positivo e chegam ao negativo. O campo elétrico no interior das substâncias dielétricas contém uma parte, fornecida pelo próprio dielétrico em forma de polarização induzida e de reorientação de suas moléculas, que modifica o campo exterior a que está submetido. Resitência elétrica Os elétrons encontram certa dificuldade em passar através dos materiais, porque não realizam uma trajetória perfeitamente livre de obstáculos. Definição da lei de OHM: A corrente que flui por um circuito é diretamente proporcional à tensão e inversamente proporcional à resistência. Fórmula de cálculo da resistência elétrica: R = E / I Circuitos elétricos e forças eletromotrizes Do estudo da eletrólise - intercâmbio eletrônico e energético entre substâncias químicas normalmente dissolvidas - surgiram as primeiras pilhas ou geradores de corrente, cuja aplicação em circuitos forneceu dados fundamentais sobre as propriedades elétricas e magnéticas da matéria. Uma carga introduzida num campo elétrico recebe energia dele e se vê impelida a seguir a direção das linhas do campo. O movimento da carga é provocado físico segundo o qual todo corpo alcança o equilíbrio em seu estado de energia mínima. Portanto, a carga tende a perder a energia adquirida, ao movimentar-se para áreas menos energéticas. Em termos elétricos, o movimento das cargas é provocado por diferenças de potencial elétrico no espaço, e as partículas carregadas se dirigem de zonas de maior para as de menor potencial.
Nessa propriedade se fundamentam as pilhas e, em geral, todos os geradores de corrente, que consistem em duas placas condutoras com potenciais diferentes. Muitos físicos, entre eles Gay-Lussac e Faraday, pesquisaram as relações existentes entre a tensão e a corrente elétricas. Georg Simon Ohm estudou as correntes elétricas em circuitos fechados e concluiu que as intensidades resultantes são diretamente proporcionais à diferença de potencial fornecida pelo gerador. A constante de proporcionalidade, denominada resistência elétrica do material e medida em ohms (volts por ampères), depende das características físicas e geométricas do condutor. Efeitos térmicos da eletricidade A passagem de cargas elétricas a grande velocidade através de condutores origina uma perda parcial de energia em função do atrito. Essa energia se desprende em forma de calor e por isso, um condutor sofre aumento de temperatura quando a corrente elétrica circula através dele. James Joule calculou as perdas de uma corrente num circuito, provocadas pelo atrito. Nesse fenômeno, denominado efeito Joule, se fundamentam algumas aplicações interessantes da eletricidade, como as resistências das estufas. O efeito também ocorre no filamento incandescente - fio muito fino de tungstênio ou material similar que emite luz quando aumenta a temperatura - utilizado nas primeiras lâmpadas de Edison e nas atuais lâmpadas elétricas. Deve-se ao efeito Joule a baixa rentabilidade industrial do sistema de correntes contínuas, em função das elevadas perdas que se verificam. Esse problema foi solucionado com a criação de geradores de corrente alternada, nos quais a intensidade elétrica varia com o tempo. Um joule é o trabalho realizado para transportar um coulomb (unidade de medida da carga elétrica) de um ponto para outro, estando os dois pontos a uma diferença de potencial de um volt(unidade de medida da diferença de potencial).O trabalho é dado por W = Q . V |
|||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2009 - Copyright (©) - PY5ZD |